publications

I also published under the aliases of Khu-rai Kim and Khu rai Kim. This list has been generated by jekyll-scholar.

2024



  1. Approximation-Aware Bayesian Optimization
    Natalie Maus,  Kyurae Kim, Geoff Pleiss, David Eriksson, John P. Cunningham, and Jacob R. Gardner.
    In Advances in Neural Information Processing Systems Dec 2024
  2. Demystifying SGD with Doubly Stochastic Gradients
    Kyurae Kim, Joohwan Ko, Yi-An Ma, and Jacob R Gardner.
    In Proceedings of the International Conference on Machine Learning (ICML) Jul 2024
  3. Provably Scalable Black-Box Variational Inference with Structured Variational Families
    Joohwan Ko,  Kyurae Kim, Woo Chang Kim, and Jacob R Gardner.
    In Proceedings of the International Conference on Machine Learning (ICML) Jul 2024
  4. Stochastic Approximation with Biased MCMC for Expectation-Maximization
    Samuel Gruffaz,  Kyurae Kim, Alain Durmus, and Jacob R Gardner.
    In Proceedings of the International Conference on Artificial Intelligence and Machine Learning (AISTATS) May 2024
  5. Linear Convergence of Black-Box Variational Inference: Should We Stick the Landing?
    Kyurae Kim, Yi-An Ma, and Jacob R. Gardner.
    In Proceedings of the International Conference on Artificial Intelligence and Machine Learning (AISTATS) May 2024

2023



  1. On the Convergence of Black-Box Variational Inference
    Kyurae Kim, Jisu Oh, Kaiwen Wu, Yi-An Ma, and Jacob R. Gardner.
    In Advances in Neural Information Processing Systems Dec 2023
  2. The Behavior and Convergence of Local Bayesian Optimization
    Kaiwen Wu,  Kyurae Kim, Roman Garnett, and Jacob R. Gardner.
    In Advances in Neural Information Processing Systems Dec 2023
  3. Automatic calculation of myocardial perfusion reserve using deep learning with uncertainty quantification
    Yoon-Chul Kim,  Kyurae Kim, and Yeon Hyeon Choe.
    Quantitative Imaging in Medicine and Surgery Oct 2023
  4. Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
    Kyurae Kim, Kaiwen Wu, Jisu Oh, and Jacob R. Gardner.
    In Proceedings of the International Conference on Machine Learning (ICML) Jul 2023

2022



  1. Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
    Kyurae Kim, Jisu Oh, Jacob R. Gardner, Adji Bousso Dieng, and Hongseok Kim.
    In Advances in Neural Information Processing Systems Jul 2022

2021



  1. Fast Calculation Software for Modified Look-Locker Inversion Recovery (MOLLI) T1 Mapping
    Yoon-Chul Kim,  Kyurae Kim, Hyelee Lee, and Yeon Hyeon Choe.
    BMC Medical Imaging Jul 2021
  2. A GPU Scheduling Framework to Accelerate Hyper-Parameter Optimization in Deep Learning Clusters
    Jaewon Son, Yonghyuk Yoo,  Kyurae Kim, Youngjae Kim, Kwonyong Lee, and Sungyong Park.
    Electronics Jul 2021

2020



  1. A Probabilistic Machine Learning Approach to Scheduling Parallel Loops with Bayesian Optimization
    Kyurae Kim, Youngjae Kim, and Sungyong Park.
    IEEE Transactions on Parallel and Distributed Systems Jul 2020
  2. Automatic Myocardial Segmentation in Dynamic Contrast Enhanced Perfusion MRI Using Monte Carlo Dropout in an Encoder-Decoder Convolutional Neural Network
    Yoon-Chul Kim,  Kyurae Kim, and Yeon Hyeon Choe.
    Computer Methods and Programs in Biomedicine Jul 2020

2019



  1. EVCMR: A Tool for the Quantitative Evaluation and Visualization of Cardiac MRI Data
    Yoon-Chul Kim,  Kyurae Kim, Kwanghee Choi, Minwoo Kim, Younjoon Chung, and Yeon Hyeon Choe.
    Computers in Biology and Medicine Jul 2019
  2. Towards Robust Data-Driven Parallel Loop Scheduling Using Bayesian Optimization
    Kyurae Kim, Youngjae Kim, and Sungyong Park.
    In Proceedings of the IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems Jul 2019